Finite Fields, Root Systems and Orbit Numbers of Chevalley Groups

نویسنده

  • Peter Fleischmann
چکیده

We describe combinatorial techniques to determine the numbers of semisim-ple conjugacy classes and adjoint orbits with xed class of centralizers for simply connected nite groups of Lie type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended affine Weyl groups and Frobenius manifolds

We define certain extensions of affine Weyl groups (distinct from these considered by K. Saito [S1] in the theory of extended affine root systems), prove an analogue of Chevalley theorem for their invariants, and construct a Frobenius structure on their orbit spaces. This produces solutions F (t1, . . . , tn) of WDVV equations of associativity polynomial in t1, . . . , tn−1, exp tn.

متن کامل

Pairs of Short Root Subgroups in a Chevalley Group

The purpose of this paper is to describe subgroups of a Chevalley group G of type B l , C l or F 4 , generated by a pair of unipotent short root subgroups. In fact we do somewhat more: namely, we classify orbits of a Chevalley group acting by simultaneous conjugation on pairs of unipotent short root subgroups. In the sequel of this paper we consider analogous problems for the case of the Cheval...

متن کامل

Groups graded by root systems and property (T).

We establish property (T) for a large class of groups graded by root systems, including elementary Chevalley groups and Steinberg groups of rank at least 2 over finitely generated commutative rings with 1. We also construct a group with property (T) which surjects onto all finite simple groups of Lie type and rank at least two.

متن کامل

Lusztig’s Geometric Approach to Hall Algebras

The introduction of l-adic cohomology by M. Artin and Grothenieck was motivated by the Weil conjecture concerning the number of rational points of algebraic varieties over finite fields. Since its introduction in the early 60s, l-adic cohomology theory has been used in the representation theory of finite Chevalley groups in a “misterious way”. The first application of l-adic cohomology and inte...

متن کامل

Shimura Correspondence for Finite Groups

Let G be a simply connected Chevalley group corresponding to an irreducible simply laced root system. Then the finite group G(Z/4Z) has a two fold central extension G(Z/4Z) realized as a Steinberg group. In this paper we construct a natural correspondence between genuine representations of G(Z/4Z) and representations of the Chevalley group G(Z/2Z).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997